Number System |
Prefixes | |||||
---|---|---|---|---|---|---|
Num | Polygon | Group | Tuple | Greek | Latin | |
1 | monogon1 | unit | unary | single | mono– haplo– |
uni– |
2 | digon | pair duo couple |
binary | double | di– | duo– bi– |
3 | triangle | trio | ternary | triple | tri– | tre– ter– |
4 | quadrilateral | quaternary | quadruple | tetra– | quadri– quadr– |
|
5 | pentagon | quinary | quintuple | penta– pent– |
quinque– quinqu– quint– |
|
6 | hexagon | sextet | senary | sextuple | hexa– hex– |
sexa– sex– |
7 | heptagon | septenary | septuple | hepta– hept– |
septua– | |
8 | octagon | octet | octal | octuple | octa– oct– |
octo– oct– |
9 | enneagon nonagon |
ennead | nonary | nonuple | ennea– | nona– |
10 | decagon | decade | decimal | decuple | deca– deka– |
deci– |
Number System |
Prefixes | |||||
Num | Polygon | Group | Tuple | Greek | Latin | |
11 | hendecagon undecagon endecagon |
undecimal2 | undecuple | hendeca– hendeka– |
undeca– | |
12 | dodecagon | dozen | duodecimal | duodecuple | dodeca– | duodeca– |
13 | tridecagon triskaidecagon |
baker’s dozen | tredecimal | tredecuple | ||
14 | tetradecagon tetrakaidecagon |
tetradecimal | quattuor-decuple | G: tetrakaideca– L: quattuordec– |
||
15 | pentadecagon pentakaidecagon |
pentadecimal | quindecuple | |||
16 | hexadecagon hexakaidecagon |
hexadecimal | sexdecuple | |||
17 | heptadecagon heptakaidecagon |
septendecimal | septendecuple | |||
18 | octadecagon octakaidecagon |
octodecimal | octodecuple | |||
19 | enneadecagon enneakaidecagon |
nonadecimal enneadecimal3 |
novemdecuple | |||
20 | icosagon | score | vigesimal | viguple | ||
Number System |
Prefixes | |||||
Num | Polygon | Group | Tuple | Greek | Latin | |
21 | unvigesimal | |||||
22 | duovigesimal | |||||
23 | trivigesimal | |||||
24 | icositetragon icosikaitetragon |
tetravigesimal | ||||
25 | pentavigesimal | |||||
26 | hexavigesimal | |||||
27 | hepta-vigesimal | |||||
28 | octovigesimal | |||||
29 | ennea-vigesimal | |||||
30 | triacontagon | trigesimal | ||||
32 | duotrigesimal | |||||
33 | tritrigesimal | |||||
34 | tetratrigesimal | |||||
35 | penta-trigesimal | |||||
36 | hexatrigesimal | |||||
38 | octotrigesimal | |||||
40 | quadragesimal | |||||
144 | 144-gon | gross | centetetra-quadragesimal | |||
360 | trecento-sexagesimal | |||||
1728 | 1728-gon | great gross | ||||
∞ | apeirogon4 | N/A | ||||
Number System |
Prefixes | |||||
Num | Polygon | Group | Tuple | Greek | Latin |
Constructing Names of Polygons with 20 to 100 Edges
To construct the name of a polygon with more than 20 and less than 100 edges, combine the prefixes as follows. The “kai” term applies to 13-gons and higher.5
Tens | and | Ones | Final Suffix | ||
---|---|---|---|---|---|
–kai– | 1 | –hena– | –gon | ||
20 | icosi– (icosa– when alone) | 2 | –di– | ||
30 | triaconta– (or triconta–) | 3 | –tri– | ||
40 | tetraconta– (or tessaraconta–) | 4 | –tetra– | ||
50 | pentaconta– (or penteconta–) | 5 | –penta– | ||
60 | hexaconta– (or hexeconta–) | 6 | –hexa– | ||
70 | heptaconta– (or hebdomeconta–) | 7 | –hepta– | ||
80 | octaconta– (or ogdoëconta–) | 8 | –octa– | ||
90 | enneaconta– (or eneneconta–) | 9 | –ennea– |
See Also
Otto, Keegan. “Keegan Otto’s answer to What is the name of a polygon that has 21-30 sides?“. Quora. January 30, 2018.
Wikipedia contributors. “List of numeral systems”. Wikipedia. Accessed August 14, 2019.
Wikipedia contributors. “List of polygons”. Wikipedia. Accessed August 13, 2019.
Footnotes
- In Euclidean geometry a monogon is a degenerate polygon because its endpoints must coincide, unlike any Euclidean line segment. Most definitions of a polygon in Euclidean geometry do not admit the monogon.
Wikipedia contributors. “Monogon”. Wikipedia. Accessed August 12, 2019. - Wikipedia contributors. “List of numeral systems”. Wikipedia. Accessed August 14, 2019.
- Wikipedia contributors. “List of numeral systems”. Wikipedia. Accessed August 14, 2019.
- A degenerate polygon of infinitely many sides.
Wikipedia contributors. “Polygon”. Wikipedia. Accessed August 12, 2019. - Wikipedia contributors. “Polygon”. Wikipedia. Accessed August 12, 2019.